
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 13: Implementing a Language: Syntaxc
o Context-Free Grammars
o Derivations and Derivation Trees
o Parse Trees and Parsing
o Abstract Syntax Trees (ASTs)
o Top-Down Parsing

Syntax of Programming Languages: Languages
In computer science, a language is any set of strings from a fixed alphabet. In general, we'll
assume that the alphabet is the set of ASCII characters.

We can specify languages informally in English:

Informal Description Set of Strings

Names of weekdays { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" }

Bit strings of length 3 { "000", "001", "010", "011", "100", "101", "110", "111" }

Strings consisting of a's and b's
with an equal number of each: { "", "ab", "ba", "aabb", "abab", "abba", "bbaa", "aaabbb", ... }
All strings of matching
parentheses: { "()", "(())", "()()", "()()()", "(())()", "()(())", }

Q: Is there a better way to specify a language than either describing them in English or simply listing
all the strings? Not really practical when the language is infinite!

Context-Free Grammars
A Context-Free Grammar (also called Backus-Naur Form, BNF) is the primary way that
the syntax of a programming language is specified. It consists of the following components:

T – A set of Terminal Symbols, which for us will simply be the alphabet of ASCII
characters. Notation:

o letters: a b c q 'A' 'T'
o digits: 1 5 9
o arithmetic operators: * + - /
o punctuation: () , ; } {

N – A set of Non-Terminal Symbols, representing sets of strings of terminal symbols (i.e.,
languages). Notation:

o capital letters: S E F T
o descriptions in angle brackets: <expressions> <ops> <statements>

One particular Non-Terminal (often S) is called the Start Symbol.

We will tend to leave off quote
marks ' and " when no
confusion would result.

Context-Free Grammars
A Context-Free Grammar (also called Backus-Naur Form, BNF) is the primary way that
the syntax of a programming language is specified. It consists of the following components:

T – A set of Terminal Symbols, which for us will simply be the alphabet of ASCII
characters.

N – A set of Non-Terminal Symbols, representing sets of strings of terminal symbols (i.e.,
languages). S ∈ N is called the Start Symbol.

P – A set of Production Rules, of the form:

Non-Terminal -> String of terminals and/or non-terminal symbols (possibly empty)

Examples:

S -> a <expr> -> <expr> + <number>

S -> a S a A -> " (" is the empty string "")

Context-Free Languages
For any grammar G, the language L(G) is called a Context-Free Language, and is
generated by G by deriving a string of terminal symbols from the start symbol by using the
production rules to rewrite a string of symbols, starting with the start symbol.

Example: P = 0: S -> a S a T = { a, b } N = { S }
1: S -> b S b
2: S -> a
3: S -> b
4: S -> !

Here is a derivation of the string ababa, with each rewrite step labelled by the number of the
production rule used, and where the symbol rewritten is underlined:

S =>0 aSa =>1 abSba =>2 ababa
Here is a derivation of the string aaaaaa:

S =>0 aSa =>0 aaSaa =>0 aaaSaaa =>4 aaaaaa

Context-Free Languages
Example: The language of matching parentheses:

P = 0: S -> (S) T = { (,) } N = { S }
1: S -> ()
2: S -> S S

Derivation of ((())):

S =>0 (S) =>0 ((S)) =>1 ((()))
Derivation of ((()))():

S =>2 SS =>0 (S)S =>0 ((S))S =>1 ((()))S =>1 ((()))()

Context-Free Languages
Example: The language of arithmetic expressions over +, ∗, and single digits:

P = 0: S -> E T = { +, ∗, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
1: E -> E + E N = { S, E }
2: E -> E ∗ E
3: E -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (shorthand for E -> 0, E -> 1, etc.)

Derivation of 8 ∗ 2 + 7:

S =>0 E =>2 E ∗ E =>1 E ∗ E + E

=>3 8 ∗ E + E

=>3 8 ∗ 2 + E

=>3 8 ∗ 2 + 7

Context-Free Languages
Note that there may be more than one
derivation for a given string:

Derivations of 8 ∗ 2 + 7:

S =>0 E =>2 E ∗ E =>1 E ∗ E + E =>3 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

S =>0 E =>1 E + E =>2 E ∗ E + E =>3 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

S =>0 E =>2 E ∗ E =>3 E ∗ E + E =>1 E ∗ E + 7 =>3 E ∗ 2 + 7 =>3 8 ∗ 2 + 7

Two simple strategies are:
o Left-most Derivation: The left-most non-terminal is rewritten at each step.
o Right-most Derivation: The right-most non-terminal is rewritten at each step.

Which is which in the above examples?

0: S -> E
1: E -> E + E
2: E -> E ∗ E
3: E -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Context-Free Languages
Note that there may be more than one
derivation for a given string:

Derivations of 8 ∗ 2 + 7:

S =>0 E =>2 E ∗ E =>1 E ∗ E + E =>3 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

S =>0 E =>1 E + E =>2 E ∗ E + E =>3 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

S =>0 E =>2 E ∗ E =>1 E ∗ E + E =>3 E ∗ E + 7 =>3 E ∗ 2 + 7 =>3 8 ∗ 2 + 7

Two simple strategies are:
o Left-most Derivation: The left-most non-terminal is rewritten at each step.
o Right-most Derivation: The right-most non-terminal is rewritten at each step.

Which is which in the above examples?

0: S -> E
1: E -> E + E
2: E -> E ∗ E
3: E -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Left-Most:

Right-Most:

Context-Free Languages
In general we will focus on left-most
derivations. Note that a string may have
more than one left-most derivation:

Left-most derivations of 8 ∗ 2 + 7:

S =>0 E =>1 E + E =>2 E ∗ E + E =>3 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

S =>0 E =>2 E ∗ E =>3 8 ∗ E =>1 8 ∗ E + E =>3 8 ∗ 2 + E =>3 8 ∗ 2 + 7

The best way to think about derivations is to visualize them using derivation trees....

0: S -> E
1: E -> E + E
2: E -> E ∗ E
3: E -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The set of derivation trees T(G) for a grammar G can be defined inductively:

Base Case: For every production rule X -> X1 X2 ... Xn in G, the following tree is in T(G):

Inductive Case: If T(G) contains the two derivation trees on left with non-terminals X and
Y at their roots, where Y occurs as a leaf node as shown, then T(G) also contains the tree on
the right:

Context-Free Languages

X

Y

Y

X

Y

X

X1 X2 Xn...

X ∈ N
{ X1, X2,...,Xn } ⊆ N ∪ T

Context-Free Languages

Examples: The following are examples of derivation trees for our arithmetic grammar.

S

E

E

E ∗ E

E

E + E
E

8

S

E

3

E

3

Context-Free Languages

E

E + E

E

8

S

E

9

3 + 9

A derivation tree is called a parse tree for a string w of terminals if it has S at the root, and
the leaves (left to right) "spell" the string w. Examples:

S

3

8 * 2 + 7

8

Parse trees are sometimes called "Concrete Syntax Trees" to distinguish them from
Abstract Syntax Trees (ASTs).

Parse trees represent the syntax of programming language expressions;
ASTs represent the semantics (the computational meaning) of expressions.

*

+

7

8 2
8 2

16 7

23

Digression: Parse Trees vs. Abstract Syntax Trees (ASTs)

Parse tree for 8 * 2 + 7 Ast for 8 * 2 + 7

As you have seen, Haskell has an elegant and simple way of representing ASTs,
since they just correspond to user-created data types:

(Plus (Times (IntVal 8) (IntVal 2)) (IntVal 7))

data Ast =
IntVal Integer

| Plus Ast Ast
| Times Ast Ast

Parsing is the process of
discovering the structure
of the parse tree for a string
and converting it into
an Ast, which can then be
evaluated.

(End of Digression) 8

7

Plus

Times

IntVal

Digression: Parse Trees vs. Abstract Syntax Trees (ASTs)

IntVal

2

IntVal

Context-Free Languages

Note that for this grammar, there can be more than one parse tree for the same string:

A grammar is said to be ambiguous if there is a string which has two distinct parse trees.

Context-Free Languages
Ambiguity is a serious problem, since it affects the way we interpret an expression, and
makes it difficult to translate from concrete syntax to abstract syntax:

Clearly, the parse tree on the left is closer to the actual meaning of the expression.

Context-Free Languages
In order to solve this problem, we have to "hack" a different grammar which avoids these
ambiguities. We will look only at the issue of precedence and associativity of operators,
although there are other ways that grammars can be ambiguous.

There is no problem with evaluation order in a fully-parenthesized expression:

(2 - ((8 ∗ 2) + 7))

But in order to enhance readability, in programming languages (and math more generally)
we may eliminate parentheses, and precedence and associativity rules tell us in which order
to perform the operations:

Precedence
class

Associativity of
the precedence
class

Context-Free
Languages

If you declare your own operator, you can define its precedence and associativity using
the functions infixl, infixr, and infix; if you do not specify, it is considered to be
highest precedence (9) and left-associative.

Context-Free Languages
Example:

2 - 8 ^ 4 ^ 3 + 7 = 2 - (8 ^ 4 ^ 3) + 7

= 2 - (8 ^ (4 ^ 3)) + 7

= (2 - (8 ^ (4 ^ 3))) + 7

= ((2 - (8 ^ (4 ^ 3))) + 7)

Precedence
class

Associativity of
the precedence
class

Context-Free Languages
If we full parenthesize our expressions, then it is easy to write a non-ambiguous grammar:

0: S -> E
1: E -> (E + E)
2: E -> (E ∗ E)
3: E -> 0 | 1 | 2 | ... | 9

((5 + ((3 ∗ 2) ∗ 4)) + 7)

S
I
E

4

s

s Fett

fat a

3 L

Context-Free Languages
But to solve the more general problem, we have to use a couple of tricks to modify the
grammar:

(1) To enforce precedence, we have to "stratify" (or "factor") a grammar into separate strata,
using separate non-terminals, so that the parse tree always has lower precedence operators at
top of tree and higher at the bottom:

5 + 3 ∗ 2

0: S -> E

1: E -> E + E
2: E -> T

3: T -> T ∗ T
4: T -> F

5: F -> 0 | 1 | ... | 9 |

s s
IF E

Efe IT t T

1 tht
t I

F F F F
l I I
5 3 Z

Context-Free Languages
But to solve the more general problem, we have to use a couple of tricks to modify the
grammar:

(2) To enforce associativity, we have arrange the recursion in the rules so that the left non-
terminal is parsed first; For left-associativity we use left-recursive rules, and for right-
recursive we use right-recursive rules:

5 + 2 + 6

0: S -> E

1: E -> E + T
2: E -> T

3: T -> 0 | 1 | ... | 9 |

S
t

LEEFFEERSIVE
E r

Ett
r

I
6

I I
T Z

T
Is

Context-Free Languages
Putting these two techniques together, we arrive at a non-ambiguous grammar for operators
such as we have in Haskell:

5 - 2 ∗ 8 / 3 + ~ 6 ^ 2
0: S -> E

1: E -> E + T
2: E -> E - T
3: E -> T

4: T -> T ∗ F
5: T -> T / F
6: T -> F

7: F -> P ^ F
8: F -> P

9: P -> ~ P
10: P -> M

11: M -> 0 | 1 | ... | 9 |

H
s s

I
FF 17TE t

EH f
t FIE

F
t i AfT f t r

t i it p pp kF E P I tF l I I M I l
w p f M I M M R
P l m l 3 I

M i g I l M
M Is Z G Z I

4

Context-Free Languages
FINALLY, if we want to have parentheses, which force us to start all over again with the
lowest-precedence operators, we can add a rule to the bottom of the grammar:

0: S -> E

1: E -> E + T
2: E -> E - T
3: E -> T

4: T -> T ∗ F
5: T -> T / F
6: T -> F

7: F -> P ^ F
8: F -> P

9: P -> ~ P
10: P -> M

11: M -> 0 | 1 | ... | 9 |
12: M -> (E)

5 - 2 ∗ 8 / (3 + 4 * 2)

E't
F

T N py p

F t l m

ff E

h'm m

I 2 8 kts insightz

